3.371 \(\int (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{5/2} \, dx\)

Optimal. Leaf size=134 \[ \frac {c^3 \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{15 f \sqrt {c-c \sin (e+f x)}}+\frac {2 c^2 \cos (e+f x) (a \sin (e+f x)+a)^{7/2} \sqrt {c-c \sin (e+f x)}}{15 f}+\frac {c \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{3/2}}{6 f} \]

[Out]

1/6*c*cos(f*x+e)*(a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(3/2)/f+1/15*c^3*cos(f*x+e)*(a+a*sin(f*x+e))^(7/2)/f/
(c-c*sin(f*x+e))^(1/2)+2/15*c^2*cos(f*x+e)*(a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {2740, 2738} \[ \frac {2 c^2 \cos (e+f x) (a \sin (e+f x)+a)^{7/2} \sqrt {c-c \sin (e+f x)}}{15 f}+\frac {c^3 \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{15 f \sqrt {c-c \sin (e+f x)}}+\frac {c \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{3/2}}{6 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(7/2)*(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(c^3*Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(15*f*Sqrt[c - c*Sin[e + f*x]]) + (2*c^2*Cos[e + f*x]*(a + a*Sin
[e + f*x])^(7/2)*Sqrt[c - c*Sin[e + f*x]])/(15*f) + (c*Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2)*(c - c*Sin[e +
f*x])^(3/2))/(6*f)

Rule 2738

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 2740

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[(a*(2*m - 1))/(m
 + n), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m])
 &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rubi steps

\begin {align*} \int (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{5/2} \, dx &=\frac {c \cos (e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{3/2}}{6 f}+\frac {1}{3} (2 c) \int (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{3/2} \, dx\\ &=\frac {2 c^2 \cos (e+f x) (a+a \sin (e+f x))^{7/2} \sqrt {c-c \sin (e+f x)}}{15 f}+\frac {c \cos (e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{3/2}}{6 f}+\frac {1}{15} \left (4 c^2\right ) \int (a+a \sin (e+f x))^{7/2} \sqrt {c-c \sin (e+f x)} \, dx\\ &=\frac {c^3 \cos (e+f x) (a+a \sin (e+f x))^{7/2}}{15 f \sqrt {c-c \sin (e+f x)}}+\frac {2 c^2 \cos (e+f x) (a+a \sin (e+f x))^{7/2} \sqrt {c-c \sin (e+f x)}}{15 f}+\frac {c \cos (e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{3/2}}{6 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.26, size = 107, normalized size = 0.80 \[ \frac {a^3 c^2 \sec (e+f x) \sqrt {a (\sin (e+f x)+1)} \sqrt {c-c \sin (e+f x)} (600 \sin (e+f x)+100 \sin (3 (e+f x))+12 \sin (5 (e+f x))-75 \cos (2 (e+f x))-30 \cos (4 (e+f x))-5 \cos (6 (e+f x)))}{960 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(7/2)*(c - c*Sin[e + f*x])^(5/2),x]

[Out]

(a^3*c^2*Sec[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]]*(-75*Cos[2*(e + f*x)] - 30*Cos[4*(e
+ f*x)] - 5*Cos[6*(e + f*x)] + 600*Sin[e + f*x] + 100*Sin[3*(e + f*x)] + 12*Sin[5*(e + f*x)]))/(960*f)

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 112, normalized size = 0.84 \[ -\frac {{\left (5 \, a^{3} c^{2} \cos \left (f x + e\right )^{6} - 5 \, a^{3} c^{2} - 2 \, {\left (3 \, a^{3} c^{2} \cos \left (f x + e\right )^{4} + 4 \, a^{3} c^{2} \cos \left (f x + e\right )^{2} + 8 \, a^{3} c^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{30 \, f \cos \left (f x + e\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

-1/30*(5*a^3*c^2*cos(f*x + e)^6 - 5*a^3*c^2 - 2*(3*a^3*c^2*cos(f*x + e)^4 + 4*a^3*c^2*cos(f*x + e)^2 + 8*a^3*c
^2)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(f*cos(f*x + e))

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)sqrt(2*a)*sqrt(2*c)*(-80*a^3*c^2*f*sign(sin(1/2*(f*x+exp(1))-1/4*pi))*sign(cos(1/2*(f*x+exp(1))-1/4*pi))*s
in(f*x+exp(1))/(16*f)^2-480*a^3*c^2*f*sign(sin(1/2*(f*x+exp(1))-1/4*pi))*sign(cos(1/2*(f*x+exp(1))-1/4*pi))*si
n(3*f*x+3*exp(1))/(96*f)^2-160*a^3*c^2*f*sign(sin(1/2*(f*x+exp(1))-1/4*pi))*sign(cos(1/2*(f*x+exp(1))-1/4*pi))
*sin(5*f*x+5*exp(1))/(160*f)^2+64*a^3*c^2*f*sign(sin(1/2*(f*x+exp(1))-1/4*pi))*sign(cos(1/2*(f*x+exp(1))-1/4*p
i))*cos(2*f*x+2*exp(1))/(64*f)^2+768*a^3*c^2*f*sign(sin(1/2*(f*x+exp(1))-1/4*pi))*sign(cos(1/2*(f*x+exp(1))-1/
4*pi))*cos(4*f*x+4*exp(1))/(256*f)^2+384*a^3*c^2*f*sign(sin(1/2*(f*x+exp(1))-1/4*pi))*sign(cos(1/2*(f*x+exp(1)
)-1/4*pi))*cos(6*f*x+6*exp(1))/(384*f)^2+384*a^3*c^2*f*sign(sin(1/2*(f*x+exp(1))-1/4*pi))*sign(cos(1/2*(f*x+ex
p(1))-1/4*pi))*cos(-2*f*x-2*exp(1))/(-128*f)^2+256*a^3*c^2*f*sign(sin(1/2*(f*x+exp(1))-1/4*pi))*sign(cos(1/2*(
f*x+exp(1))-1/4*pi))*cos(-4*f*x-4*exp(1))/(-256*f)^2)

________________________________________________________________________________________

maple [A]  time = 0.31, size = 116, normalized size = 0.87 \[ -\frac {\left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {5}{2}} \sin \left (f x +e \right ) \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {7}{2}} \left (-5 \left (\cos ^{6}\left (f x +e \right )\right )+\sin \left (f x +e \right ) \left (\cos ^{4}\left (f x +e \right )\right )-6 \left (\cos ^{4}\left (f x +e \right )\right )+3 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-8 \left (\cos ^{2}\left (f x +e \right )\right )+11 \sin \left (f x +e \right )-11\right )}{30 f \cos \left (f x +e \right )^{7}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(5/2),x)

[Out]

-1/30/f*(-c*(sin(f*x+e)-1))^(5/2)*sin(f*x+e)*(a*(1+sin(f*x+e)))^(7/2)*(-5*cos(f*x+e)^6+sin(f*x+e)*cos(f*x+e)^4
-6*cos(f*x+e)^4+3*cos(f*x+e)^2*sin(f*x+e)-8*cos(f*x+e)^2+11*sin(f*x+e)-11)/cos(f*x+e)^7

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(7/2)*(-c*sin(f*x + e) + c)^(5/2), x)

________________________________________________________________________________________

mupad [B]  time = 10.29, size = 124, normalized size = 0.93 \[ -\frac {a^3\,c^2\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (75\,\cos \left (e+f\,x\right )+105\,\cos \left (3\,e+3\,f\,x\right )+35\,\cos \left (5\,e+5\,f\,x\right )+5\,\cos \left (7\,e+7\,f\,x\right )-700\,\sin \left (2\,e+2\,f\,x\right )-112\,\sin \left (4\,e+4\,f\,x\right )-12\,\sin \left (6\,e+6\,f\,x\right )\right )}{960\,f\,\left (\cos \left (2\,e+2\,f\,x\right )+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^(7/2)*(c - c*sin(e + f*x))^(5/2),x)

[Out]

-(a^3*c^2*(a*(sin(e + f*x) + 1))^(1/2)*(-c*(sin(e + f*x) - 1))^(1/2)*(75*cos(e + f*x) + 105*cos(3*e + 3*f*x) +
 35*cos(5*e + 5*f*x) + 5*cos(7*e + 7*f*x) - 700*sin(2*e + 2*f*x) - 112*sin(4*e + 4*f*x) - 12*sin(6*e + 6*f*x))
)/(960*f*(cos(2*e + 2*f*x) + 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(7/2)*(c-c*sin(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________